The Mini Vet Guide to...
Companion Animal Medicine

1st Edition 2012
Edited by: Dr Gerardo Poli

To order please email: minivetguide@gmail.com
INFORMATION:

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiopulmonary Resuscitation (CPR)</td>
<td>5</td>
</tr>
<tr>
<td>Anaemia and Pale Mucous Membranes</td>
<td>7</td>
</tr>
<tr>
<td>Anaesthesia and Analgesia</td>
<td>13</td>
</tr>
<tr>
<td>Antimicrobial Selection</td>
<td>24</td>
</tr>
<tr>
<td>Biochemistry</td>
<td>28</td>
</tr>
<tr>
<td>Blood Transfusion</td>
<td>34</td>
</tr>
<tr>
<td>Cardiovascular Disease</td>
<td>39</td>
</tr>
<tr>
<td>Coagulopathy</td>
<td>51</td>
</tr>
<tr>
<td>Constipation and Tenesmus</td>
<td>55</td>
</tr>
<tr>
<td>Cytology</td>
<td>58</td>
</tr>
<tr>
<td>Dental Disease</td>
<td>61</td>
</tr>
<tr>
<td>Dermatology</td>
<td>65</td>
</tr>
<tr>
<td>Dermatology – Feline</td>
<td>72</td>
</tr>
<tr>
<td>Diabetes Ketoacidosis</td>
<td>76</td>
</tr>
<tr>
<td>Diabetes Mellitus</td>
<td>80</td>
</tr>
<tr>
<td>Diarrhoea and Haematochezia</td>
<td>84</td>
</tr>
<tr>
<td>Dysphagia and Oral Disease</td>
<td>91</td>
</tr>
<tr>
<td>Dystocia and Reproductive Organ Disease</td>
<td>95</td>
</tr>
<tr>
<td>Ear Disease</td>
<td>99</td>
</tr>
<tr>
<td>Effusions</td>
<td>104</td>
</tr>
<tr>
<td>Electrolytes and Blood Gas</td>
<td>107</td>
</tr>
<tr>
<td>Endocrine Disease</td>
<td>109</td>
</tr>
<tr>
<td>Hyperthyroidism</td>
<td>109</td>
</tr>
<tr>
<td>Hypothyroidism</td>
<td>110</td>
</tr>
<tr>
<td>Hyperadrenocorticism</td>
<td>112</td>
</tr>
<tr>
<td>Hypoadrenocorticism</td>
<td>115</td>
</tr>
<tr>
<td>Fluid Therapy</td>
<td>117</td>
</tr>
<tr>
<td>Haematology</td>
<td>124</td>
</tr>
<tr>
<td>Hepatobiliary Disease</td>
<td>128</td>
</tr>
<tr>
<td>Nasal and Nasopharyngeal Disease</td>
<td>134</td>
</tr>
<tr>
<td>Neurology</td>
<td>138</td>
</tr>
<tr>
<td>Ophthalmology</td>
<td>151</td>
</tr>
<tr>
<td>Osteoarthritis</td>
<td>159</td>
</tr>
<tr>
<td>Pancreatic Disease</td>
<td>161</td>
</tr>
<tr>
<td>Paralysis and tick</td>
<td>163</td>
</tr>
<tr>
<td>Parasitic Disease</td>
<td>165</td>
</tr>
<tr>
<td>Prostatic Disease</td>
<td>174</td>
</tr>
<tr>
<td>Radiology</td>
<td>176</td>
</tr>
<tr>
<td>Rectal and Perineal Disease</td>
<td>194</td>
</tr>
<tr>
<td>Renal Disease - Acute and Chronic</td>
<td>199</td>
</tr>
<tr>
<td>Respiratory Disease</td>
<td>206</td>
</tr>
<tr>
<td>Seizure Disorders</td>
<td>220</td>
</tr>
<tr>
<td>Status Epileptic Flowchart</td>
<td>225</td>
</tr>
<tr>
<td>Shock and Anaphylaxis</td>
<td>226</td>
</tr>
<tr>
<td>Skeletal Disease</td>
<td>229</td>
</tr>
<tr>
<td>Toxicology</td>
<td>241</td>
</tr>
<tr>
<td>Urinalysis</td>
<td>251</td>
</tr>
<tr>
<td>Urinary Tract Disorders</td>
<td>255</td>
</tr>
</tbody>
</table>

Cardiopulmonary Resuscitation (CPR)
Viral Disease and Vaccination: .. 263
Vomiting and Regurgitation .. 272
Wound Management .. 277

FLOWCHARTS: ... 279
Bleeding .. 279
Constipation / Tenesmus .. 280
Diarrhoea ... 281
Effusion & Oedema .. 282
Jaundice / Icterus ... 283
Pale Mucous Membranes ... 284
Polyuria / Polydipsia .. 285
Pyrexia / Fever of Unknown Origin ... 286
Regurgitation ... 287
Respiratory Distress .. 288
Respiratory: .. 289
Nose and Nasopharynx .. 289
Respiratory: .. 290
Pharynx and Larynx ... 290
Respiratory: .. 291
Trachea and Bronchi ... 291
Respiratory: .. 292
Pulmonary, Pleural, Chest wall ... 292
Salivation Disorder ... 293
Seizure Disorder .. 294
Urinary Incontinence .. 295
Vomiting .. 296
Weight Loss ... 297
Weakness / Collapse .. 298

APPENDIX: ... 300
Neurological examination .. 300
Euthanasia ... 306
Sample Collection and Storage: ... 307
Common Drugs Summary .. 308
Anaesthetic – Sedatives / Premedics .. 308
Anaesthetics – Induction and Maintenance ... 310
Analgesia - Opioids .. 312
Analgesia – Local Anaesthetics ... 314
Analgesia – Non-steroidal Anti-inflammatory Drugs 314
Antibiotics ... 315
Antifungals ... 317
Behaviour Drugs .. 318
Cardiopulmonary Drugs .. 319
Corticosteroids and Anti-histamines ... 321
Emergency Drugs .. 323
Gastrointestinal Drugs .. 324
Urinary System ... 326
Seizure Disorders ... 327
Other Drugs ... 328
Notes .. 330
Anaemia and Pale Mucous Membranes

- **This chapter covers:**
 - Determining the severity of the anaemia
 - Assessing for regenerative response
 - Working up “Pale Mucous Membranes”
 - Including working up anaemia and the causes of anaemia

- **Degree of anaemia:**
 - Refer to “Pale Mucous Membranes” diagnostic pathway below

<table>
<thead>
<tr>
<th></th>
<th>Mild</th>
<th>Moderate</th>
<th>Severe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dogs</td>
<td>30-35%</td>
<td>20-30%</td>
<td><20%</td>
</tr>
<tr>
<td>Cats</td>
<td>20-25%</td>
<td>20-15%</td>
<td><15%</td>
</tr>
</tbody>
</table>

- **Regeneration:**
 - Seen as an increased number of reticulocytes in peripheral circulation
 - Regenerative response takes 3-4 days – if no reticulocytes could be pre-regenerative assess history

- **Reticulocytes:** Immature RBC, large blue cells, low MCHC & high MCV, polychromatic (blue-grey)
 - Quantify using “Corrected Reticulocyte Percentage” formula:

 \[
 \text{Observed reticulocyte } \% \times \left(\frac{\text{patient’s HCT } \%}{\text{“normal” HCT } \%} \right) = \text{“Corrected reticulocyte } \%\]

 ("Normal HCT" = 45% in dogs, 40% in cats)

- **Regenerative anaemia:**
 - Cats:
 - Two types of reticulocytes:
 - Aggregate type: Only count this type when assessing response to anaemia
 - Punctate type: Healthy cats up to 10% ↑ if regenerative response been for up to 3-4 weeks

<table>
<thead>
<tr>
<th>Degree:</th>
<th>Dogs:</th>
<th>Cats:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regeneration:</td>
<td>>1%</td>
<td>>0.5%</td>
</tr>
<tr>
<td>Mild:</td>
<td>1.5 – 4%</td>
<td>0.5 - 2%</td>
</tr>
<tr>
<td>Moderate:</td>
<td>5 – 20%</td>
<td>3 – 4 %</td>
</tr>
<tr>
<td>Marked:</td>
<td>>20%</td>
<td>> 4%</td>
</tr>
</tbody>
</table>

- See following flowcharts for more information

- Refer to “Haematology”, “Blood transfusion” and “Coagulopathy” for more information
Anaemia and Pale Mucous Membranes

- **History:**
 - How long showing signs for (acute/chronic)
 - Trauma, bleeding (faecal, urinary, integument, respiratory)
 - Access to rodenticide, snakes
 - Prior health issues – renal disease, tumours, viral infections (FIV/FeLV)
 - On any medication, or access to medication

Anaemia
- **CSx:**
 - Severity depends on speed of onset, aetiology, activity
 - Weakness
 - Tachycardia/pnoea
 - ↓ Exercise intolerance
 - Haematochezia
 - Haematuria
 - Abdominal distension

CSx:
- Looking for reticulocytes %
- Polychromasia
- Macrocytosis
- Hypochromasia
- Poikilocytosis

Regenerative Anaemia

Haemorrhage
- Trauma and surgery
- Neoplasia
- Gastrointestinal tract
- Urinary tract
- Parasites (fleas/hookworm)
- Coagulopathy

See “Coagulopathy”
See “Diarrhoea and Haematochezia”

Peracute:
- No change in PCV & TP
- Lost in equal proportion

Acute (>&3hrs):
- ↓ PCV & TP
- Blood dilution via interstitial fluid
- Mild thrombocytosis
- Stress leucogram

Acute (<3hrs):
- ↓ PCV & TP
- Blood dilution via interstitial fluid
- Mild thrombocytosis
- Stress leucogram

Acute Haemorrhage:
- Trauma, erosion of BVess, coagulopathy (warfarin)

Acute Haemolysis:
- Colour of buffy coat
- Blood & urinalysis

See “Haemolysis” below

Non-Regenerative Anaemia
- Greater than > 3day history and no reticulocytes
- Pancytopenia
- Nucleated RBC in circulation
- Normocytic/chromic

See “Non-regenerative anaemia” following pages

Poor Peripheral Perfusion
- **CSx:**
 - Collapse
 - ↓ CRT
 - Weak femoral pulses
 - Cold extremities
- **DDx:**
 - Dehydration
 - Shock
 - Cardiac disease – Dilated CM, arrhythmia

See “Shock and Anaphylaxis”

Blood Smear
- Acute (<3hrs)
 - ↓ PCV & normal TP
 - Protein from lymph
 - Bone marrow response
 - Macrocytic anaemia

Chronic (slow)
- ↓ PCV & normal TP

External bleed:
- Difficult to detect
- Hypochromic, Microcytic, ↓ MCHC
- Neutropena, yhrombocytosis

Internal bleed:
- GIT bleed (ulcers / parasites / neoplasia / infection)
- Urine and faeces loss

Diagnostic tests:
- CBC, biochemistry
- Faeces analysis (blood, parasites), Urinalysis
- Ultrasound

PALE MUCOUS MEMBRANES

- ↓ PCV
- PCV & TP
- Normal to ↑ PCV
Anaemia and Pale Mucous Membranes

Causes of Haemolytic Anemia
(all seem to cause both types of haemolysis)

- **History:**
 - Blood transfusions – Haemolytic transfusion reactions
 - Drugs/Toxins – IMHA, Infectious haemolytic anaemia (bacterial toxins)
 - Neoplasia – Microangiopathic anaemia, IMHA
 - Infections – Infectious haemolytic anaemia, *Mycoplasma haemofelis*

- **Diagnostic tests:**
 - Biochemistry, haematology and blood smear:
 - IMHA (spherocytes), microangiopathic anaemia (schistocytes), infectious haemolytic anaemia (*Babesia, Mycoplasma haemofelis*)
 - Coomb’s test:
 - IMHA, neonatal isoerythrolysis, haemolytic transfusion reactions
 - Blood typing or cross matching:
 - Between dam and puppy, donor and recipient
 - Neonatal isoerythrolysis, haemolytic transfusion reactions
 - Ultrasound:
 - Microangiopathic anaemia (neoplasia), IMHA (neoplasia)
 - Blood sample and blood culture & sensitivity:
 - Infectious haemolytic anaemia
 - PCR:
 - *Mycoplasma haemofelis*

- **Immune mediated haemolytic anaemia:**
 - See below under “Specific conditions”

- **Drugs/Toxins:**
 - Bacterial toxins, rodenticide, snake bite (clinical signs of lower motor neuron paresis/paralysis, or haemoglobinuria), Heinz body anaemia (onions and garlic, paracetamol)

- **Haemolytic transfusion reactions:**
 - Donor RBC’s are lysed by host alloantibodies
 - Immediate or delayed (1-2 weeks). See “Blood Transfusion” for more information

- **Microangiopathic anaemia:**
 - Physical destruction of RBC as they pass through disorganised blood vessels (e.g. tumour):
 - Haemangiosarcoma, DIC, haemolytic uraemic syndrome
 - Schistocytes formation

- **Infectious haemolytic anaemia:**
 - Direct infection and damage to RBC’s by infectious organisms eg. *mycoplasma, babesia, leptospria*, or viruses FeLV, FIP
 - Indirect damage to RBC’s via antibodies directed against infectious organism
 - See below under “Specific conditions”

- **Neonatal isoerythrolysis:**
 - Neonate RBC lysed by dam antibodies, can be absorbed from colostrum
 - In cat it can be naturally occurring, dogs require sensitization

Haemolysis

Intravascular = lysis of RBC in circulation
- Red plasma (haemoglobinemia)
- Hyperbilirubinemia
- Haemoglobinuria

Extravascular = lysis of RBC within tissues
- Clear plasma
- No/minimal hyperbilirubinaemia
- No Haemoglobinuria
- ± Splenomegaly

- **Intravascular:** Lysis of RBC in circulation
 - Red plasma (haemoglobinemia)
 - Hyperbilirubinemia
 - Haemoglobinuria

- **Extravascular:** Lysis of RBC within tissues
 - Clear plasma
 - No/minimal hyperbilirubinaemia
 - No Haemoglobinuria
 - ± Splenomegaly
Anaemia and Pale Mucous Membranes

Non-Regenerative Anaemia

- **Features**:
 - Can appear non-regenerative if blood loss or haemolysis has only recently occurred ie. <48-72hrs
 - Non-regenerative anaemia are not as common in dogs as they are in cats
 - Typically chronic process with no clinical signs of anaemia (due to compensation)

>48-90hrs = Non-regenerative:

- Bone marrow has not responded

Either:

- Bone marrow pathology OR
- Non-bone marrow pathology

Haematology:
- Assess RBC features:
 - Typically normocytic/normochromic
 - If microcytic/hypochromic – iron deficiency
 - If macrocytic - could be FIV, FeLV
- Assess WBC features:
 - If pancytopenia can primary bone marrow pathology or toxicities or infections affecting bone marrow

Biochemistry:
- Assess for non-bone marrow pathology

Bone marrow biopsy:
- Assess for bone marrow pathology
- Presence of abnormal cells
- Reduction of cells lines
- Can see pancytopenia

<48-90hrs = Pre-regenerative:

- Acute blood loss or haemolysis
- Bone marrow has not had time to respond
- If stable and not require blood transfusion, treat presenting problem and reassess PCV and blood smear after 24-48hrs

Non-bone marrow pathology:

- **Anaemia of chronic disease:**
 - Secondary to prolonged inflammation, infection, neoplasia, liver disease

- **Chronic renal disease:**
 - Reduce EPO production

- **Hypothyroidism (dogs):**
 - Reduced stimulation of EPO production

- **Iron deficiency:**
 - Typically microcytic/hypochromic
 - Fleas

- **Toxicity:**
 - Can see pancytopenia
 - Drugs/metals:
 - Chemotherapy, phenobarbitone, methimazole, lead, chloramphenicol
 - Hormones:
 - Oestrogen toxicity or sertoli cell tumour

- **Infections:**
 - Can see pancytopenia
 - Viral (FIV and FeLV) – can be macrocytic
 - Parasitic (babesia, mycoplasma, ehrlichiosis)

- **Immune medicated haemolytic anaemia:**
 - Immune destruction of RBC precursors in bone marrow

Bone marrow pathology:

- **Red blood cell aplasia:**
 - Destruction of only RBC precursors
 - Secondary to idiopathic, immune, drugs and toxins

- **Aplastic anaemia:**
 - All cell line precursors are reduced = pancytopenia
 - Idiopathic or secondary to immune, drugs and toxins, parvovirus, FeLV

- **Bone marrow necrosis/fibrosis:**
 - Precursor cells are destroyed

- **Myelodysplasia:**
 - Defective precursor cells → abnormal maturation or cellular morphology
 - Idiopathic or secondary to FIV, FeLV

- **Bone marrow tumour:**
 - Precursor cells destroyed by neoplastic cells
 - Primary – see large numbers of immature cells of the same cell line
 - Metastatic – see cell types not normally seen in bone marrow

Anaemia and Pale Mucous Membranes
Specific conditions:

- **Immune mediated haemolytic anaemia:**
 - Pathophysiology:
 - Immune response against RBC antigens, due to a breakdown in immunotolerance to own RBC antigens
 - IgG & IgM & complement binding
 - Observe autoagglutination (grapes)
 - Can cause intravascular or extravascular haemolysis
 - Causes:
 - Primary: Idiopathic (Genetic)
 - Secondary (triggered by cross-reaction with foreign antigens): Drugs/ Neoplastic/ Infections / Immune
 - Clinical signs:
 - Pyrexia, anaemia, icterus, weakness, tachycardia/pnoea, splenomegaly, respiratory distress
 - Lab results:
 - Haematology and blood smear: Spherocytes and autoagglutination, polychromasia, neutrophilia, If decreased thrombocytes – then could be Evan’s syndrome, high MCV
 - Hyperbilirubinaemia, high ALT
 - Perform Coombs test if no agglutination
 - Treatment:
 - Primary IMHA is more difficult and takes longer to treat compared to secondary IMHA (eg. neoplasia)
 - Blood transfusion if acute reduction in PCV <20 or chronic drop <15 – see “Blood Transfusion”
 - Start immunosuppressive agents:
 - Dexamethasone 0.6mg/kg SC, then 12hrs later start prednisolone 2-4mg/kg PO divided BID
 - ± Cyclosporine: 5-10mg/kg PO divided BID
 - ± Azathioprine 2mg/kg PO SID, then 0.5mg/kg PO EOD – Monitor for bone marrow suppression and hepatoxicity, also very toxic in cats (0.3mg/kg PO SID)
 - Start gastric protectants - ranitidine 2mg/kg SID, sulcralfate PO TID
 - Start anti-thrombotic agents:
 - IMHA is a prothrombotic state, high risk thromboembolism
 - If severe clinical signs or rapid deterioration – icterus, autoagglutination
 - Aspirin 0.5mg/kg PO SID OR dalteparin 100IU/kg SC TID
 - Monitor PCV and blood smear for spherocytes weekly – when PCV >23-30 and when no spherocytes reduce prednisolone dose as below while continue monitoring PCV and blood smears or CBC’s
 - Reduce prednisolone dose by 25% each time or to 1mg/kg PO divided BID → 1mg/kg PO divided BID every other day → 0.5mg/kg PO SID → etc. tapering off over a couple weeks
 - If after 6wks and spherocytes are still present despite stable PCV keep the same prednisolone dose and add in another agent, and continue monitoring as above:
 - Cyclosporine: 5-10mg/kg PO divided BID
 - Azathioprine: 1-2mg/kg PO SID
 - When PCV and blood smear are normal/stable – start to reduce doses and frequency, reducing the second agent first then prednisolone after

- **Mycoplasma Haemofelis:**
 - Pathophysiology:
 - Epierythrocytic parasite
 - Leads to destruction of red blood cells by the immune system, leading to extravascular haemolysis in typically in the spleen
 - Can have a carrier state where non-clinical infections can occur and cause transient parasiteaemia

Anaemia and Pale Mucous Membranes
Reoccurrences are common

Clinical signs:
- Pyrexia, anaemia, icterus, weakness, tachycardia/pnoea, splenomegaly, respiratory distress

Diagnostics:
- Haematology and blood smear:
 - Regenerative anaemia with reticulocytes, spherocytes, polychromasia
 - ± Parasites on RBC surface (stained with geimsa stain)
- PCR at local laboratory

Treatment:
- Doxycycline or enrofloxacin for 3 weeks
- Corticosteroids at immunosuppressive doses
- Blood transfusion if becomes anaemic
This chapter covers:
- The differentials for increases and decreases seen in a biochemistry panel
- What other changes may be seen with the different differentials
- See also:
 - Hepatobiliary Disease, Pancreatic Disease, Renal Disease, Diabetes Mellitus

Albumin:

<table>
<thead>
<tr>
<th>INCREASED:</th>
<th>DECREASED:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dehydration (↑ PCV, ↑ TP)</td>
<td>† Production:</td>
</tr>
<tr>
<td>Artefact</td>
<td>➢ Liver disease (↑ liver enzymes (not if chronic), ↓ Urea)</td>
</tr>
<tr>
<td></td>
<td>➢ PSS (↓ Alb, ↓ Glu, ↓ Urea)</td>
</tr>
<tr>
<td></td>
<td>† Loss:</td>
</tr>
<tr>
<td></td>
<td>➢ PLE (± vomiting and diarrhoea)</td>
</tr>
<tr>
<td></td>
<td>➢ PLN (Proteinuria, ± azotaemia, no ↓ globulins)</td>
</tr>
<tr>
<td></td>
<td>➢ Haemorrhage, burns</td>
</tr>
<tr>
<td></td>
<td>† Dilution (↓ PCV, ↓ TP)</td>
</tr>
<tr>
<td></td>
<td>† Intake (malnutrition)</td>
</tr>
<tr>
<td></td>
<td>When albumin drops below 15g/L colloid therapy is indicated, to maintain colloid osmotic pressure. See “Fluid therapy”</td>
</tr>
</tbody>
</table>

ALP:

Alkaline phosphatise
Produced by canalicular membranes
Different isoenzymes in osteoblasts, chondroblast & hepatobiliary cells

CATS any increase is significant as normally has rapid clearance, indicates active inflammation

<table>
<thead>
<tr>
<th>INCREASED:</th>
<th>DECREASED:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liver damage (↑ ALT)</td>
<td>† Artefact</td>
</tr>
<tr>
<td>Liver disease, that can cause ↑ ALP only</td>
<td></td>
</tr>
<tr>
<td>➢ Hyperadrenocortisim</td>
<td></td>
</tr>
<tr>
<td>➢ Idiopathic vacuolar heptaopathy</td>
<td></td>
</tr>
<tr>
<td>➢ Hepatic neoplasia</td>
<td></td>
</tr>
<tr>
<td>➢ Nodular hyperplasia</td>
<td></td>
</tr>
<tr>
<td>➢ Drug induction</td>
<td></td>
</tr>
<tr>
<td>↑ Cortisol (hyperadrenocorticism, chronic stress, corticosteroids – cats no cortisol isoenzyme)</td>
<td></td>
</tr>
<tr>
<td>Diabetes mellitus (↑ blood & urine glucose)</td>
<td></td>
</tr>
<tr>
<td>Cholestasis (↑ bilirubin, bile acids, ↑ GGT)</td>
<td></td>
</tr>
<tr>
<td>Bone disease (lists, and hyperparathyroidism) (↑ Ca+, Phos)</td>
<td></td>
</tr>
<tr>
<td>Young growing animals (osteoblasts)</td>
<td></td>
</tr>
<tr>
<td>Hyperparathyroidism (↑ Ca+, Phos)</td>
<td></td>
</tr>
<tr>
<td>Hyperthyroidism (↑ ALT)</td>
<td></td>
</tr>
<tr>
<td>Hypothyroidism</td>
<td></td>
</tr>
<tr>
<td>Carcinomas and mammary gland tumours</td>
<td></td>
</tr>
</tbody>
</table>
Biochemistry

ALT:

Alanine aminotransferase
Produced by hepatocytes
Also other cells renal, muscle, pancreatic cells

<table>
<thead>
<tr>
<th>INCREASED:</th>
<th>DECREASED:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hepatocyte damage (major source)</td>
<td>▪ Reduced liver mass</td>
</tr>
<tr>
<td>Liver-specific enzyme:</td>
<td>▪ Puppies due to immaturity</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ Hypoxic damage, inflammation/infection, neoplasia, toxic (↑ ALP, ↑ AST)</td>
<td></td>
</tr>
<tr>
<td>▪ Drugs (phenobarbitone) (↑ ALP)</td>
<td></td>
</tr>
<tr>
<td>▪ Diabetes mellitus (↑ blood & urine glucose)</td>
<td></td>
</tr>
<tr>
<td>▪ Hyperadrenocorticism (↑ ALP, ↓ USG)</td>
<td></td>
</tr>
<tr>
<td>▪ Hypertension (↑ BP, ± proteinuria)</td>
<td></td>
</tr>
<tr>
<td>▪ FeLV, trauma (cats)</td>
<td></td>
</tr>
<tr>
<td>Other sources:</td>
<td></td>
</tr>
<tr>
<td>▪ Renal cells (± Azotaemia)</td>
<td></td>
</tr>
<tr>
<td>▪ Cardiac muscle (damage), Skeletal muscle (damage) (↑ CK, ± ↑ AST))</td>
<td></td>
</tr>
<tr>
<td>▪ Pancreas (± ↑ amylase, lipase)</td>
<td></td>
</tr>
</tbody>
</table>

Ammonia:

INCREASED:
Liver failure (↓ uptake) (cirrhosis and PSS) (↓ Alb, ↓ Glu, ↓ Urea, ↑ Bile acids, ammonium biurate crystals (PSS))
Haemolysis (↑ bilirubin, ↓ PCV)

Amylase:

Non-specific, produced by many abdominal pathologies

<table>
<thead>
<tr>
<th>INCREASED:</th>
<th>DECREASED:</th>
</tr>
</thead>
<tbody>
<tr>
<td>↑ Up to 3-4x - Acute necrotising pancreatitis, flare-ups of chronic pancreatitis or obstruction of pancreatic ducts</td>
<td></td>
</tr>
<tr>
<td>Renal failure (2-3x ↑) (↑ Azotaemia)</td>
<td></td>
</tr>
<tr>
<td>Liver disease (↑ ALT)</td>
<td></td>
</tr>
</tbody>
</table>

AST:

Aspartate aminotransferase
Produce by hepatocytes, muscles

<table>
<thead>
<tr>
<th>INCREASED:</th>
<th>DECREASED:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non liver-specific enzyme:</td>
<td>▪ Cephalosporin use</td>
</tr>
<tr>
<td>▪ Non-specific liver damage (↑ ALT)</td>
<td></td>
</tr>
<tr>
<td>▪ Muscle inflammation or necrosis (↑ CK)</td>
<td></td>
</tr>
<tr>
<td>▪ Haemolysis (± ↓ PCV, ↑ bilirubin)</td>
<td></td>
</tr>
</tbody>
</table>

Bile Acids:

Don’t need to measure if ↑ bilirubin, but may be increases before ↑ bilirubin

Pre and post-prandial bile acids – used to assess hepatocellular function and enterohepatic function

<table>
<thead>
<tr>
<th>INCREASED:</th>
<th>DECREASED:</th>
</tr>
</thead>
<tbody>
<tr>
<td>↓ Liver function or functional mass (↓ Bile acid recycling):</td>
<td>▪ Small intestinal malabsorption (↓ absorption)</td>
</tr>
<tr>
<td>▪ Chronic hepatitis/Hepatic cirrhosis: (↓ Alb, ↓ Glu, ↓ Urea, ↑ bilirubin)</td>
<td></td>
</tr>
<tr>
<td>▪ Neoplasm (± ↑ ALT, ALP, GGT)</td>
<td></td>
</tr>
<tr>
<td>▪ Cholestasis (obstructing overflow) (↑ ALP, GGT)</td>
<td></td>
</tr>
<tr>
<td>▪ PSS (bypass liver recycling) (↓ Alb, ↓ glucose, ↓ Urea)</td>
<td></td>
</tr>
</tbody>
</table>
Blood Transfusion

- This chapter covers:
 - The types of blood products and their indications
 - Collection and cross matching
 - Administration of blood products and rates
 - Transfusion reactions, clinical signs and how to investigate and treatment

Blood products and indications:

Types of blood products:

<table>
<thead>
<tr>
<th>Types</th>
<th>Aims</th>
<th>Indications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole blood (<8hrs old)</td>
<td>Increase oxygen carrying capacity</td>
<td>Anaemia (hypovolaemic)</td>
</tr>
<tr>
<td></td>
<td>Clotting factors (all)</td>
<td>Thrombocytopenia</td>
</tr>
<tr>
<td></td>
<td>Platelets (do not refrigerate)</td>
<td>Coagulopathies</td>
</tr>
<tr>
<td></td>
<td>Albumin</td>
<td></td>
</tr>
<tr>
<td>Packed red cells (>8hrs old)</td>
<td>Increase oxygen carrying capacity</td>
<td>Anaemia (normovolaemic)</td>
</tr>
<tr>
<td>Stored whole blood (<21 days old)</td>
<td>Increase oxygen carrying capacity</td>
<td>Anaemia (hypovolaemic)</td>
</tr>
<tr>
<td></td>
<td>Stable clotting factors (Vitamin K dependent)</td>
<td>Coagulopathies (rodenticide)</td>
</tr>
<tr>
<td></td>
<td>Plasma proteins</td>
<td></td>
</tr>
<tr>
<td>Frozen fresh plasma</td>
<td>Clotting factors</td>
<td>Non-anaemic</td>
</tr>
<tr>
<td>(frozen <6hrs after collection)</td>
<td>Plasma proteins</td>
<td>Coagulopathies:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DIC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Liver disease</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rodenticide</td>
</tr>
<tr>
<td></td>
<td></td>
<td>vWD & hemophilia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hypoalbuminemia</td>
</tr>
<tr>
<td>Fresh plasma (<6hrs old)</td>
<td>Clotting factors</td>
<td>Same as FFF</td>
</tr>
<tr>
<td></td>
<td>Plasma proteins</td>
<td>Thrombocytopenia</td>
</tr>
<tr>
<td></td>
<td>Platelets</td>
<td></td>
</tr>
<tr>
<td>Stored or frozen plasma</td>
<td>Stable clotting factors</td>
<td>Non-anaemic</td>
</tr>
<tr>
<td>(frozen >6hrs after collection OR frozen plasma >1yr old)</td>
<td>Plasma proteins</td>
<td>Coagulopathies:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rodenticide</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hypoalbuminemia</td>
</tr>
</tbody>
</table>

Indications for blood products:

- **Red blood cells:**
 - PCV <15% OR when rapidly drops <20% (15% in cats)
 - PCV <25% and need to do surgery or anaesthesia
 - Clinical signs of anaemia:
 - Exercise intolerance, tachycardia, tachypnoea, dyspnoea, weakness, hypotension, depression, syncope and stupor

- **Plasma:**
 - Indicated for coagulopathies or increase in coagulation function prior to surgery
 - If significant clinical haemorrhage:
 - Fresh frozen plasma can be given in 10ml/kg boluses (administer anti-histamine beforehand), this can be repeated until clotting time improves
• Otherwise can give at 10ml/kg/hr until reduced haemorrhage, normalised ACT then reduce to 2ml/kg/hr as a maintenance, up to 50ml/kg/day
 ➢ If mild bleeding and underlying cause is being treated:
 ➢ Administer fresh frozen plasma at 2-3ml/kg/hr as a maintenance
 ➢ If no bleeding but need to perform surgery:
 ➢ Can administer fresh frozen plasma as a bolus 10ml/kg

✓ **Albumin:**
 ➢ Low oncotic pressure and critically ill patients
 ➢ NOTE: 5-10ml/kg of plasma is required to increase albumin by 1g/L, providing nutrition is a more efficient. Artificial colloids can be used to increase oncotic pressure, see “Fluid Therapy”

✓ **Platelets:**
 ➢ Thrombocytopenia
 ➢ NOTE: Platelet transfusions not typically administered for thrombocytopenia (wait for regenerative response). 20ml/kg of fresh whole blood increases platelets by <40 x 10⁹/L

Blood types:
✓ **Dogs (> 13 types):**
 ➢ Dogs can have more than one blood type
 ➢ No natural alloantibodies so don’t need to cross match but ideally should
 ➢ Antibodies form after 5-7 days, if second transfusion done after 5 days MUST cross match

✓ **Cats (A, B, AB):**
 ➢ Ideally blood type but if no blood typing then MUST cross match, ideally do both
 ➢ Type A cats:
 ➢ Most common antigen type
 ➢ Have low levels of naturally occurring anti-B antibodies – therefore if given type B blood – delayed reaction
 ➢ Type B cats:
 ➢ Have high amounts of anti-A antibodies therefore if given type A blood – severe reaction
 ➢ Typically (Persians, Himalayans, British shorthairs, Devon, 1 in 4 domestic)
 ➢ Type AB cats: Can have anyone’s blood but can’t donate

Collection:

Donor selection:
✓ Dogs: BWt > 25Kg, PCV > 35%, fully vaccinated, not received blood before
✓ Cats: BWt > 5kg, PCV > 35%, fully vaccinated and indoor not received blood before, negative for FeLV and FIV, ideally blood typed

Collection from donor:
✓ Heavily sedate or anaesthetise donor
✓ Place a jugular catheter, extension set (not in cats)
✓ Can collect 10% of ‘blood volume’
 ➢ Blood volume: 66ml/kg in Cats, 90ml/kg in Dogs
✓ Mix blood with 7:1 ratio with anti-coagulant, ie. blood:anticoagulant = 7mls:1ml
✓ As blood is collecting in bag continually mix
Effusions

- **This chapter covers:**
 - How to collect and store samples
 - Interpretation of the samples
 - Common differentials

- **Sample collection:**
 - Collect sample into a EDTA, serum or sterile tube
 - Make smear and stain → microscope:
 - Inflammatory, neoplastic, non-inflammatory/neoplastic, bacteria other
 - Assess:
 - PCV/TP – compare to blood
 - Glucose – compare to blood glucose
 - Send away for culture and cytology (smears)

- **Type of effusion and features:**

<table>
<thead>
<tr>
<th>Effusion</th>
<th>Protein Concentration (g/l)</th>
<th>Total Nucleated Cell Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transudate</td>
<td>< 25 (= <1.010)</td>
<td>< 1.5 x 10⁹</td>
</tr>
<tr>
<td></td>
<td>Formed by passive process – low oncotic pressure</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fluid is clear to pale straw coloured</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Can have low numbers of mesothelial and inflammatory cells – macrophages and neutrophils</td>
<td></td>
</tr>
<tr>
<td>Modified transudate</td>
<td>25–50 (≈ 1.010–1.030)</td>
<td>1 – 5 x 10⁹</td>
</tr>
<tr>
<td></td>
<td>More chronic process – increased hydrostatic pressure or increased capillary/lymphatic permeability</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fluid is yellowish, ± blood tinged, slightly turbid</td>
<td></td>
</tr>
<tr>
<td></td>
<td>High protein concentration compared to transudate</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Can have cells present like a transudate</td>
<td></td>
</tr>
<tr>
<td>Exudate</td>
<td>> 30 (≈ >1.018)</td>
<td>> 5 x 10⁹</td>
</tr>
<tr>
<td></td>
<td>Due to inflammatory process vessel integrity compromised</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fluid is turbid to cloudy, yellow, white, red</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Non-septic:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Non-degenerate neutrophils & activated mesothelial cells predominate</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Non-infectious cause</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Septic:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Degenerate neutrophils (nuclear swelling & pale staining) predominate</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Intracellular or extracellular</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Bacteria, fungi, mycoplasma</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Should culture – aerobic and anerobic</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Abdominal fluid [glucose] < serum [glucose]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Abdominal fluid [lactate] < serum [lactate]</td>
<td></td>
</tr>
<tr>
<td>Chyle</td>
<td>Variable protein concentration</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Opaque to pink</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rupture or obstruction of lymphatic flow (neoplasia, traumatic, idiopathic), or secondary to heart failure (especially in cats)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pseudocyle (usually formed by lymphoma)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fluid [TAG] > serum [TAG]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Large number of lymphocytes and other inflammatory cells</td>
<td></td>
</tr>
</tbody>
</table>
- Abdominal cavity – VD view

- Abdominal cavity – Lateral view
Thoracic Cavity:

- **Pulmonary parenchyma/vasculature:**
- **Capsulated air filled structures:**
 - Bullae, cysts, abscess – thin outline
 - Neoplasia, abscess, granulomas – thickened irregular border

- **Vascular pattern:**
 - Features:
 - Veins are central (VD) and ventral (LAT)
 - Enlarged pulmonary arteries and veins – compare both with the diameter of:
 - 9th rib on VD (up to 1.5 x diameter in cats is normal)
 - 4th rib on LAT
 - Differentials:
 - Enlarged pulmonary veins:
 - Overhydration, pulmonary congestion, pulmonary hyperperfusion (shunts)
 - Enlarged pulmonary arteries:
 - Pulmonary hypertension, heartworm disease, pulmonary thromboembolism
 - Both enlarged:
 - Shunts, overhydration, severe LHS heart failure
 - Both reduced:
 - Shock states, dehydration, RHS heart failure

- **Bronchial pattern:**
 - Features:
 - Abnormally defined bronchial walls – seen as “donuts” or “tram tracks”:
 - Old age change
 - Bronchial disease – chronic bronchitis, allergic, eosinophilic bronchopneumopathy
 - Mineralisation – hyperadrenocorticism

- **Alveolar pattern:**
 - Features:
 - Pulmonary infiltration with fluid/soft tissue
 - “Fluffy” ill-defined regions of increased opacity
 - Can be lobar in distribution
 - Enhanced visualisation of airways – air bronchograms
 - Loss of visualisation of pulmonary vasculature
 - Pattern of distribution:
 - LHS CHF – dogs – hilar, cats – can look like anything
 - Pneumonia – typically ventral or dependant side if aspirated
 - Caudal lobes – neurogenic, post-obstructive
 - Differentials:
 - Pneumonia (infectious, aspiration, allergic)
 - Pulmonary oedema (CHF, smoke, drowning, post-obstructive, seizures, head trauma, electrocution)
 - Haemorrhage (traumatic/coagulopathic)
 - Neoplasia
 - Atelectasis – anaesthesia and bronchiectasis
• **Interstitial pattern:**
 • **Features:**
 - Unstructured:
 - Thickened interstitium due to fluid or cellular infiltrates – seen as “diffuse haziness”
 - Can still vascular patterns unlike alveolar pattern
 - Differentials:
 - Neoplasia, early oedema, pneumonia, pulmonary fibrosis (normal in older dogs)
 - Expiratory radiograph
 - Structured:
 - Miliary – multiple small opacities
 - Differentials:
 - Physiological mineralisation, end on blood vessels, neoplasia (metastatic)
 - Nodular – circumscribed increased opacities >4mm in diameter
 - Differentials:
 - Neoplasia (metastatic), granuloma (fungal, foreign body), abscess/cysts

Cardiac Silhouette:

<table>
<thead>
<tr>
<th>View</th>
<th>Dog</th>
<th>Cat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lat</td>
<td>✓ Width: 3 intercostal spaces (2.5-3.5)</td>
<td>✓ Width: 2 intercostal spaces (cranial 5th to caudal 7th ribs)</td>
</tr>
<tr>
<td></td>
<td>✓ Height: 2/3 depth of thorax</td>
<td>✓ Height: 70% of thorax</td>
</tr>
<tr>
<td>DV</td>
<td>✓ Width: 2/3 depth of thorax</td>
<td>✓ Width: half width of thorax</td>
</tr>
<tr>
<td></td>
<td>✓ Length: between 3rd & 8th ribs (5 i/c spaces)</td>
<td></td>
</tr>
</tbody>
</table>

Assessment of cardiac size:

Vertebral heart size:

- Height: Ventral border of the bronchus to the distal aspect of the apex
- Width: Width of the heart at its widest point
- Add the widths and start at the cranial aspect of the 4th thoracic vertebra count the number of vertebrae that it covers
 - All breeds: <10.7
 - Boxers: <13
 - Labrador: <12
 - Cavalier king Charles: <11.5
 - Cats: <8

* see Cardiology References:

Chamber enlargement:

See below:

Note: Inverted “D” shape in feline patients is not specific of any condition

- RHS cardiac enlargement:
 - Increased sternal contact (LAT), inverted “D” shape (VD)
- LHS chamber enlargement:
 - Taller cardiac silhouette (LAT)
 - Dorsally displaced trachea (LAT)
- Enlarged LHS atrium:
 - Bulge on the dorsocaudal border (LAT)
Pericardium = Global enlargement
- Right atrial tumour
- Heartbase tumour
- Congestive heart failure
- Benign pericarditis
- Cracked left atrium

Aortic arch = 12 – 1 o’clock
- Patent ductus arteriosus
- Aortic stenosis
- Tetralogy of Fallot
- Persistent right aortic arch

Pulmonary artery = 1 – 2 o’clock
- Pulmonic stenosis
- PDA
- Pulmonary hypertension

Left auricle = 2 - 4 o’clock
- Secondary to mitral endocardiosis
- VSD

Right atrium = 8 – 11 o’clock
- Heartworm
- Pulmonic stenosis
- Right atrial tumour

Right ventricle = 5 – 9 o’clock
- Right ventricular enlargement

Left ventricle = 3 – 5 o’clock
- Left ventricular enlargement
Respiratory Disease

- **This chapter covers:**
 - Differentiation between respiratory patterns to help localise disease process
 - General diagnostic principles
 - Commonly seen respiratory disease - features, clinical signs, diagnostic and treatment principles
 - See “Nasopharyngeal Disease” for upper respiratory tract disease

- **Dyspnoea:**
 - Increased respiratory effort
 - **Presentation:**
 - **Dogs:** Sitting or standing (unable to lay down) with neck extended and open mouth breathing
 - **Cats:** Sternal recumbency with elbows abducted & abdominal effort to assist with inspiration
 - Characterised according to:
 - **Phase:** Inspiratory or expiratory
 - **Audible noise:** Stridor, stertor, wheeze
 - **Auscultatory noise:** Wheezes, crackles, breath sounds
 - **Respiratory rate**
 - **Pattern of excursion:** Restrictive vs. obstructive
 - **Heart rate - sinus arrhythmia usually indicates primary respiratory disease**

- **History:**
 - **Duration and severity**
 - **Coughing, sneezing, tachypnoea, nasal discharge**
 - **Recent medications**

- **Diagnostics:**
 - **SPO2**
 - **Blood gas:**
 - Best if arterial blood sample
 - Assess pulmonary function, degree of oxygenation and adequacy of ventilation
 - **Imagery:**
 - Radiographs (3 views)
 - Fluoroscopy: If suspecting dynamic airway disease
 - Ultrasound: If lesion is near the chest wall/mediastinal
 - **Scoping:**
 - Tracheobronchoscope – to visualise airways and to collect fluid samples
 - Lower airway fluid sampling:
 - Bronchoalveolar lavage (best performed with scoping) and transtracheal wash
 - Cytology and culture/PCR
 - Fine needle aspirates and swabs:
 - Cytology and culture/PCR

- **Emergency assessment and stabilisation:**
 - Assessment of respiratory pattern
 - SPO2 and oxygen therapy
 - Sedation:
 - Butorphanol 0.1-0.3mg/kg IM
 - Acepromazine if certain that respiratory distress is not due to cardiac disease
 - **IV catheter placement**
 - ± Cooling
 - ± Emergency intubation and ventilation
Respiratory Disease

Type of respiratory pattern

Rapid and shallow breathing
- **Restrictive:**
 - Rapid and shallow breathing

Prolonged breathing phase
- **Obstructive:**
 - Prolonged breathing phase

Decreased breathing sounds:
- Snoring
- Inspiratory dyspnoea
- Pleural space disease:

Increased breathing sounds:
- Can be both inspiratory and expiratory dyspnea when severe
- Pulmonary parenchymal disease:

Reduced excursions:
- Normal breathing sounds but reduced inspiratory excursions
 - Neuromuscular weakness
 - Chest wall disease/diaphragm disease

Auscultatable sounds:

Inspiratory with stertor:
- Snoring
- Inspiratory dyspnoea
- **Extrathoracic disease:**
 - Nasal cavity and nasopharynx

Inspiratory with stridor:
- High pitched wheeze or gasp
- Inspiratory dyspnoea
- **Extrathoracic disease:**
 - Larynx and cervical tracheal disease

Expiratory with rapid rate:
- Rapid expiratory dyspnoea
 - ± Wheezing
 - ± Cough
- **Intrathoracic disease:**
 - Intrathoracic trachea and bronchi
Urinalysis

- This chapter covers:
 ✓ Collection of urine
 ✓ Interpretation of findings on urinalysis, dipstick test
 ✓ Interpretation of proteinuria

- Collection:
 ✓ Maybe refrigerated (not frozen) for up to 12hrs and warmed to room temp before testing
 ✓ Cystocentesis: Best for assessing urine BUT not for assessing haematuria

- Gross examination:
 ✓ Volume, colour (red/cloudy – blood, yellow/brown – bilirubin, red/brown - haemoglobin), turbidity

- Urine concentration:
 ✓ MORNING SAMPLE IS BEST – most concentrated

<table>
<thead>
<tr>
<th>Urine Specific Gravity</th>
<th>Differentials (proposed mechanisms)</th>
</tr>
</thead>
<tbody>
<tr>
<td><1.008 = Hyposthenuria</td>
<td>Actively diluting</td>
</tr>
<tr>
<td></td>
<td>Hyperadrenocorticism (↓ ADH secretion and reduced activity)</td>
</tr>
<tr>
<td></td>
<td>Hypercalcaemia (↓ NaCl reabsorption, ↓ ADH sensitivity)</td>
</tr>
<tr>
<td></td>
<td>Hepatic disease (↓ Urea → medullary washout)</td>
</tr>
<tr>
<td></td>
<td>Pyelonephritis (↓ sensitivity to ADH due to endotoxins)</td>
</tr>
<tr>
<td></td>
<td>Diabetes insipidus (↓ ADH production or ↓ ADH activity at kidneys)</td>
</tr>
<tr>
<td></td>
<td>Pyometra (↓ sensitivity to ADH due to endotoxins)</td>
</tr>
<tr>
<td></td>
<td>Hyperthyroidism (↑ GFR – medullary washout, polydipsia)</td>
</tr>
<tr>
<td></td>
<td>Psychogenic polydipsia (primary polydipsia)</td>
</tr>
<tr>
<td></td>
<td>IV fluids</td>
</tr>
<tr>
<td></td>
<td>Diuretics</td>
</tr>
<tr>
<td>1.008-1.013 = Isosthenuria</td>
<td>Not concentrating</td>
</tr>
<tr>
<td></td>
<td>Renal disease (↑ GFR, osmotic diuresis and medullary washout)</td>
</tr>
<tr>
<td></td>
<td>And above</td>
</tr>
<tr>
<td>1.014-1.029 = Minimally concentration</td>
<td>Minimally concentrated (inappropriate if concurrent dehydration)</td>
</tr>
<tr>
<td></td>
<td>Hypoadrenocorticism (↓ aldosterone → ↓ NaCl reabsorption)</td>
</tr>
<tr>
<td></td>
<td>Diabetes mellitus/renal glycosuria (osmotic diuresis)</td>
</tr>
<tr>
<td></td>
<td>Renal disease</td>
</tr>
<tr>
<td></td>
<td>Hepatic disease</td>
</tr>
<tr>
<td></td>
<td>Hyperadrenocorticism</td>
</tr>
<tr>
<td>1.030-1.045 = Hypersthenuria</td>
<td>Normal or could be acute renal disease</td>
</tr>
<tr>
<td>>1.045: Hypersthenuria</td>
<td>Dehydration in dogs, normal in cats</td>
</tr>
</tbody>
</table>
- **Dipstick test:**

pH:
- **Increased pH** (alkalinity):
 - Alkalosis, urinary tract infection, urine retention
- **Decreased pH** (acidity):
 - Fever, starvation, high-protein diet, acidosis, excessive muscular activity

Protein:
- Assess in conjunction with USG and sediment examination
- ONLY detects > 30mg/dl of protein
- DOES NOT detect globulins and Bence-Jones proteins (plasma cell myeloma)
- UP/C ratio is a more accurate quantitative estimate of proteinuria – **See below**

- **False negative:** Dilute urine, acidic urine, albumin concentrations 1-30mg/dl
- **False positive:** Alkaline urine

- **Causes of proteinuria:** 2+ or more or >1+ in dilute urine
 - **Haemorrhage** (>5 RBC per HPF):
 - Trauma, inflammation, neoplasia
 - **Inflammation in the urinary tract** (>5 WBC per HPF):
 - Inflammation, neoplasia
 - **Renal disease:**
 - Usually NO blood or significant cellular sediment
 - **Primary glomerular disease:** Significant 3-4+ dipstick protein – amyloidosis, glomerulonephritis
 - **Primary tubular disease:** Mild to moderate <2+ dipstick protein
 - **Pre-renal proteinuria:**
 - Mild <2+ dipstick protein – fever, cardiac disease, shock, muscular exertion, seizures

Glucose:
- Present in urine if exceeds renal reabsorption capacity:
 - Cats: ~15mmol/L
 - Dogs: ~10mmol/L
- Diabetes mellitus – concurrent hyperglycaemia
- Fanconi syndrome – glucosuria with hyperglycaemia – due to renal tubular pathology
- Stress hyperglycaemia (cats) – has to exceeded renal threshold
- Hyperadrenocorticism

Ketones:
See ketonuria before ketonaemia
- High-fat diet – fat breakdown
- Starvation/anorexia - catabolism
- Diabetes mellitus/ketoacidosis – ketoacidosis due to uncontrolled diabetes
- Very young

Bilirubin:
- Will see bilirubinuria before hyperbilirubinaemia
- **DOGS:** Small amounts in concentrated urine is ok (eg. 1+ with >1.025, 2+ with >1.040)
- **CATS:** Trace amounts are significant in cats (hepatobiliary disease)
- Hepatobiliary disease:
 - Bile flow obstruction/liver disease
- Haemolysis:
 - Haemolytic anaemia

Urobilinogen:
- No value, test strip is out of date
Blood/Haemoglobin:
- Spin down the urine to differentiate

Haematuria:
- Lower urinary tract infection/inflammation, trauma, neoplasia
- Spin down urine: haematuria → RBC pellet, serum: clear

Haemoglobinuria:
- Haemolytic disease e.g. IMHA
- Spin down urine haemoglobinuria → red/brown with no sediment, serum = haemolysis and anaemia

Myoglobinuria:
- Muscle damage (↑ CK)
- Spin down urine – should brown/red with no sediment, serum = clear c.f. haemoglobinuria, and no anaemia

Sediment Examination:
- Slow centrifugation over a longer period of time. Eg. 1500rpm over 5-10mins

<table>
<thead>
<tr>
<th>Erythrocytes:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bleeding, coagulopathy, inflammation, neoplasia</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Leucocytes:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inflammation</td>
</tr>
<tr>
<td>Infection</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Microorganisms:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacteria:</td>
</tr>
<tr>
<td>Primary or secondary (neoplasia, hyperadrenocorticism)</td>
</tr>
<tr>
<td>Culture is the only way to rule it infection - no haematuria, pyuria, proteinuria does NOT rule out infection as could be immunosuppressed and polyuric</td>
</tr>
<tr>
<td>Fungi</td>
</tr>
<tr>
<td>Protozoa</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Casts:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increased in acidic urine</td>
</tr>
<tr>
<td>Decreased in alkaline urine (dissolve)</td>
</tr>
<tr>
<td>Increased hyaline or granular casts → nephritis or kidney damage, inflammation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Crystals:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Types depend on urine pH, concentration, temperature</td>
</tr>
<tr>
<td>See “Urinary Tract Disorders” for more information</td>
</tr>
</tbody>
</table>
Pyrexia / Fever of Unknown Origin

- Persistant fever
- Severity:
 - <40ºC = mild
 - 40-40.5ºC = moderate
 - >40.5 = severe
- NOT hyperthermia:
 - ↑ Environmental temperature
 - Recent exercise
 - Reduced cooling – brachycephalic and laryngeal paralysis

General physical examination:
- Repeat every 8 to 12hrs
- Assess all body systems - Oral, ocular, ear, skin, respiratory, cardiovascular, gastrointestinal, hepatic, renal, urinary, prostatic, lymphnodes, musculoskeletal, reproductive
- Neurological examination

Diagnostics:
- PCV/TP and blood smear, biochemistry, haematology, urinalysis
- Cytology and culture of effusions, blood, CSF and urine
- Serology - CSF
- Radiographs and ultrasound

Bacterial:
- Foreign body
- Peritonitis – abdominal pain - ultrasound
- Discospondylitis:
 - ± Back pain
 - Radiographs, urine culture, ± fungal
- Endocarditis:
 - ± Murmur
 - Blood cultures, echocardiogram
- Pneumonia/pyothorax:
 - Single lung can be asymptomatic
 - Radiographs and BAL/FNA
- Atypical:
 - Mycobacterial – non-healing wounds
 - Culture
 - Cat fight abscesses - clip cat
 - Mycoplasma haemofelis – smears, PCR

Protozoa:
- See “Neurology” and “Parasitic Disease”
- Neospora (Anti-body titres)
- Toxoplasma

Fungal:
- See “Nasal and nasopharyngeal disease”
- Aspergillus:
 - URT and disseminated (anywhere – eyes, brain, spine, bone, kidneys)
 - Beware German Shepards
- Cryptococcus:
 - URT and neurological signs

Viral:
- See “Viral Disease and Vaccination”
- FIP, FIV, FeLV – systemic illness
- FHV, FCV – oral, URT and ocular signs

Immune mediated conditions:
- IMHA:
 - See “Endocrinology”
 - Jaundice, anaemia, agglutination, spherocytes
- IMTP:
 - See “Coagulopathy”
 - Thrombocytopanea, bleeding
- Immune mediated polyarthritis:
 - Shifting, multiple limb lameness
 - Hock and carpus usually
- Inflammatory meningitis:
 - See “Neurology”
 - ± Neck pain, neurological signs

Inflammatory conditions:
- Pancreatitis, prostatitis, cholangiohepatitis, panniculitis

Neoplastic
Urinary Incontinence

Things to consider:
- Secondary to PU/PD disorder
- Submissive behaviour
- Unable to walk:
 - Eg. severe osteoarthritis
 - Cognitive dysfunction – loss of house training

Urethral incompetence:
- Female speyed
- Medium to large breed
- Urine leak when sleeping, standing, sitting
- Able to urinate normally
- Loss of urethral sphincter support possibly secondary to lack of oestrogen or loss of broad ligament support

Inflammation:
- Pollakiuria
- Stranguria
- ± Haematuria
- Small bladder
- Bacterial infection (primary/secondary)
- Urolithiasis
- Feline lower urinary tract disease
- Neoplasia
- Prostatitis

Ectopic ureter:
- Young <1yr
- Urine leak when sleeping, standing, sitting
- “Never house trained” “Always done it”

Paradoxical urinary incontinence:
- Large firm bladder
- Inability to completely
- Secondary to outflow obstruction → overflow incontinence when pressure exceeds sphincter
- Prostatic disease
- Neoplasia
- Urolithiasis
- Feline lower urinary tract disease

Neurological dysfunction:
- Concurrent neuological signs
- LMN/UMN spinal reflexes
- ± Spinal pain
- Larger bladder
- Inability to completely
- Upper motor neuron lesion:
 - Firm distended bladder, difficult to express, does not completely empty
- Lower motor neuron lesion:
 - Soft bladder, easy to express, does not completely empty
- Detrusor areflexia:
 - Reduced detrusor contractions due to overdistension of the bladder → damage to tight junctions

Watching urination behaviour
- Bladder palpation before and after urination
- Prostate palpation
- Neurological examination
- Urinalysis
- USG, dipstick, cytology
- ± Culture and sensitivity
- ± CBC and biochemistry and electrolytes
- Ultrasound of bladder, kidneys, prostate
- Prostatic wash (urine culture does not always pick up prostatitis)
- ± Radiographs, ± excretory urogram
- Trial on medication to increase sphincter tone if all has be ruled out and is a large breed speyed female

See “Urinary Tract Disorders” and “Prostatic Disease”
- For more information, differentials and treatment

Flowcharts
<table>
<thead>
<tr>
<th>Drug (Trade Name)</th>
<th>Action/Effect</th>
<th>Indications</th>
<th>Dosage</th>
<th>Side Effects/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amoxycillin-clavulanic acid</td>
<td>Penicillins</td>
<td>Skin / otitis externa</td>
<td>Dogs: 12.5-25mg/kg PO BID</td>
<td>Do not give IV</td>
</tr>
<tr>
<td>(Amoxyclav; Clavulox; Noroclav)</td>
<td>Bactericidal</td>
<td>Bone (less well)</td>
<td>10-20mg/kg SC/PO BID</td>
<td>Can give oral meds with or without food</td>
</tr>
<tr>
<td></td>
<td>Gram +ve</td>
<td>URT/pneumonia</td>
<td>1ml/20kg SC SID</td>
<td>NOT – CSF; eye; bone; milk; abscess</td>
</tr>
<tr>
<td></td>
<td>Gram -ve</td>
<td>Urogenital tract (not ✔️)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anaerobes</td>
<td>Soft tissue</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Not pseudomonas</td>
<td>GI disease (HGE)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pancreatitis; PSS; pyometra; mastitis</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dogs:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>12.5-25mg/kg PO BID</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10-20mg/kg SC/PO BID</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1ml/20kg SC SID</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cats:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>62.5mg/cat PO BID</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dogs:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>12.5-25mg/kg PO BID</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10-20mg/kg SC/PO BID</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1ml/20kg SC SID</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cats:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>62.5mg/cat PO BID</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Azithromycin</td>
<td>Macrolide</td>
<td>Chlamydia felis</td>
<td></td>
<td>Temporary clearance of organism</td>
</tr>
<tr>
<td></td>
<td>Bactericidal</td>
<td></td>
<td></td>
<td>Hepatotoxic</td>
</tr>
<tr>
<td></td>
<td>Gram +ve</td>
<td></td>
<td></td>
<td>NOT – CSF</td>
</tr>
<tr>
<td></td>
<td>Anaerobes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Not anaerobes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cephalexin (Rilexine)</td>
<td>Cephalosporin</td>
<td>Skin</td>
<td>15-20mg/kg BID or</td>
<td>NOT – CSF; eye; milk; prostate</td>
</tr>
<tr>
<td></td>
<td>Bactericidal</td>
<td>Bone (less well)</td>
<td>30mg/kg SID</td>
<td>With food</td>
</tr>
<tr>
<td></td>
<td>Gram +ve</td>
<td>Respiratory tract p/</td>
<td></td>
<td>Can get IMHA</td>
</tr>
<tr>
<td></td>
<td>Gram –ve (some)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anaerobes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Not anaerobes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cephazolin/Cephalothin (Keflin; Cefzol)</td>
<td>2nd/3rd gen</td>
<td>Pre and post-surgery</td>
<td>10-30mg/kg IV/ SC TID</td>
<td>Administer slow IV (can cause anaphylaxis)</td>
</tr>
<tr>
<td></td>
<td>Gram –ve</td>
<td></td>
<td></td>
<td>Make 1g up to 9.6ml with water for injection</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloramphenicol (Chloropt)</td>
<td>Bacteriostatic</td>
<td>Eye (topical)</td>
<td>2-3 times day</td>
<td>Also Chlamydia; Mycoplasma; Rickettsia</td>
</tr>
<tr>
<td></td>
<td>Gram +ve</td>
<td>FHV</td>
<td></td>
<td>Suppresses bone marrow</td>
</tr>
<tr>
<td></td>
<td>Gram –ve (some)</td>
<td>Crosses BBB (CNS)</td>
<td></td>
<td>Not for cats or young animals</td>
</tr>
<tr>
<td></td>
<td>Anaerobes</td>
<td>Bone/most tissues</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clindamycin (Antirobe)</td>
<td>Lincosamide</td>
<td>Bone / cartilage</td>
<td>5.5-11mg/kg BID</td>
<td>Also Toxoplasma; Mycoplasma</td>
</tr>
<tr>
<td></td>
<td>Bacteriostatic</td>
<td>Consolidated lungs</td>
<td></td>
<td>See GIT problems</td>
</tr>
<tr>
<td></td>
<td>Gram +ve</td>
<td>Rhinitis</td>
<td></td>
<td>NOT – CSF</td>
</tr>
<tr>
<td></td>
<td>Anaerobes</td>
<td>Skin/prostate/placenta</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Doxycycline (Vibravet)</td>
<td>Tetracycline</td>
<td>Respiratory tract</td>
<td>Loading dose of 5mg/kg, then</td>
<td>Also Bordetella; Mycoplasma; Chlamydia felis</td>
</tr>
<tr>
<td></td>
<td>Bacteriostatic</td>
<td>Abscess</td>
<td>2.5mg/kg q 12 hours for 2 doses, then</td>
<td>May stain teeth in young dogs</td>
</tr>
<tr>
<td></td>
<td>Gram +ve</td>
<td>Conjunctivitis</td>
<td>maintenance dose 2.5mg/kg q 24 hrs</td>
<td>GIT upsets; oesophagitis; hepatotoxic; nephrotoxic (not</td>
</tr>
<tr>
<td></td>
<td>Gram –ve (some)</td>
<td>Feline herpes</td>
<td></td>
<td>Doxy)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Urogenital tract (including prostate)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bone; eye; CSF; sinus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drug (Trade Name)</td>
<td>Action/Effect</td>
<td>Indications</td>
<td>Dosage</td>
<td>Side Effects/Comments</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--------------------------------------</td>
<td>--------------------------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Activated charcoal (Carbasorb)</td>
<td>↓ absorption of toxins</td>
<td>Intoxication</td>
<td>Granules: 1-4g/kg PO</td>
<td>Care regarding aspiration pneumonia; administer via NGT</td>
</tr>
<tr>
<td>Apomorphine</td>
<td>Dopamine agonist</td>
<td>Emetic</td>
<td>0.03mg/kg IV (dogs)</td>
<td>Care regarding respiratory depression</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Intoxication e.g. rat bait</td>
<td>0.1mg/kg SC</td>
<td>Can give Metoclopramide to antagonise GIT effects</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.25mg conjunctiva</td>
<td>Do not use to cats</td>
</tr>
<tr>
<td>Carafate (Sucralfate)</td>
<td>Binds to and protects ulcerated/inflamed GIT</td>
<td>GI ulcers Chronic vomiting</td>
<td>0.5-1g PO TID</td>
<td>Administer as slurry; care re aspiration</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>¼ of tablet/cat TID</td>
<td>Administer > 30mins before meals</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Medicate other drugs 2 hours before carafate</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Administer antacids 1 hours after carafate</td>
</tr>
<tr>
<td>Cimetidine</td>
<td>H2 receptor antagonist (anti-histamine)</td>
<td>GI ulcers Chronic vomiting</td>
<td>10mg/kg QID-TID IV/IM/PO</td>
<td>Beware when used with anti-fungals, erythromycin</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Renal failure: 2.5-5mg/kg BID PO</td>
<td></td>
</tr>
<tr>
<td>Cisapride</td>
<td>Prokinetic – entire GIT</td>
<td>Gastric reflux Ileus Constipation</td>
<td>Cats: 2.5 – 5mg PO BID-TID</td>
<td>Caution if dysrhythmias or severe electrolyte abnormalities – can affect electrical conduction in heart</td>
</tr>
<tr>
<td>Dolasetron (Anzemet)</td>
<td>Anti-emet (central effects) Not a prokinetic</td>
<td>Use where other drugs failed</td>
<td>0.6-1.0mg/kg IV, PO SID-QID</td>
<td></td>
</tr>
<tr>
<td>Lactulose (Duphalac)</td>
<td>Stool softener</td>
<td>Constipation</td>
<td>1ml/4.5kg PO TID to effect</td>
<td>Excessive use, can lead to fluid and electrolyte losses</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dog: 0.5ml/kg TID</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cat: 1ml/cat TID</td>
<td></td>
</tr>
<tr>
<td>Omeprazole (Nexium)</td>
<td>Proton pump inhibitor (↓ acid release)</td>
<td>Gastric ulcers Oesophagitis</td>
<td>0.5-1.0mg/kg IV, PO SID</td>
<td>Slow IV 2-3 days to maximum effect</td>
</tr>
<tr>
<td>Metoclopramide (Metomide)</td>
<td>Anti-emet</td>
<td>Nausea Vomiting (CRTZ) Ileus/hypomotility</td>
<td>CRI: 1-2mg/kg/day</td>
<td>SC or IM/slow IV dose only last 2-4 hours</td>
</tr>
<tr>
<td></td>
<td>↑ intestinal movement/tone (prokinetic)</td>
<td></td>
<td>0.2-0.5mg/kg TID IV, IM, PO, SC</td>
<td>Overdose → excitement, distress, diarrhea</td>
</tr>
<tr>
<td></td>
<td>Anti-dopamine</td>
<td></td>
<td></td>
<td>Reverse with diphenhydramine 1mg/kg IV</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Do not use if intestinal bleeding or obstruction</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>↑ oesophageal sphincter tone; relax pyloric sphincter</td>
</tr>
</tbody>
</table>